PROVIDING WILD FISH SURROGATES: UPDATES ON DELIVERY, REARING, AND QUALITY OF FISH

Karen Cogliati, David Noakes, Carl Schreck, Cameron Sharpe

Acknowledgements

science for a changing world

Rob Chitwood Olivia Hakanson **Crystal Herron** Amanda Pollock John Rogers Michelle Scanlan Kate Self Courtney Danley* Julia Unrein* Heather Stewart* Eric Billman*

* past members

The Oregon Hatchery Research Center Staff:

Ryan Couture Joseph O'Neil Joyce Mahr Alex Powell

Volunteers & students

ODFW staff & hatchery managers

ODFW Researchers

Funding: Army Corps of Engineers

Pacific Northwes

US Army Corps of Engineers.

THE COMPLEX ISSUE OF DAMS

- Numerous benefits:
 - Hydroelectricity, flood control, recreation
- But, they change the landscape and environment
- Impair anadromous fish passage
 - Declines in wild fish populations
 - Hatchery fish added to the system

WILLAMETTE VALLEY PROJECT DAMS (OREGON USA)

- Studies evaluating juvenile salmonid movement to and through dams
- Many salmonids ESA listed

HATCHERY AND NATURAL FISH DIFFERENCES

Hatchery origin

Behavior Morphology Physiology Genetics

HATCHERY AND NATURAL REARING ENVIRONMENT

WILD FISH SURROGATE PROJECT

- Produce juvenile salmonids in artificial environments that emulate <u>specific wild fish phenotypes</u>
 - Spring Chinook salmon
 - Winter steelhead trout

WILD FISH SURROGATE PROJECT

<u>Goal:</u>

Rear and deliver wild fish surrogates to researchers

Objectives:

- 1. Coordinate fish needs with researchers
- 2. Develop rearing protocols that produce more wild-like fish
- 3. Evaluate the quality and phenotypic accuracy of our surrogates
- 4. Describe phenotypes of naturally-reared fish to establish target phenotypes
- 5. Describe phenotypes of hatchery-reared fish to determine the effects of conventional hatchery protocols

STEP 1: COORDINATE WITH RESEARCHERS

- Planning 1-2 years in advance of fish needs
 - Rear from eyed-egg or green egg stages

- Information required from researchers:
 - Brood stock
 - Brood year
 - Time of release
 - Target size at release

STEP 1: COORDINATE WITH RESEARCHERS

- Planning 1-2 years in advance of fish needs
 - Rear from eyed-egg or green egg stages

- Information required from researchers:
 - Brood stock
 - Brood year
 - Time of release
 - Target size at release

TARGET SIZE AND TIME

TARGET SIZE AND TIME

Size

ESTABLISHING TARGET PHENOTYPES

JUVENILE MIGRATION AND REARING

- Threshold or decision points
- ----- Migration downstream
- Rearing

ALTERED REARING ENVIRONMENT

Diet

Density

Temperature

Wild-like growth

Tank environment

CHINOOK SALMON 2016 DELIVERIES

Location	Brood Year	Target type	# fish	Status
Foster	14	Yearling	750	RT and PIT tagged at FPGL Spring 2016
Green Peter	14	Yearling	500	Delivered May 2016
Foster	15	Sub-yearling	1,350	RT and PIT tagged at FPGL Fall 2016
Lookout Point	15	Sub-yearling	600	JSATS and PIT tagged at FPGL

CHINOOK SALMON UPCOMING REQUESTS

Location	Brood Year	Deliverable type	#	Target date	Target size (mm)
Cougar	15	Yearling	1,500	May 2017	140
Lookout Point	15	Yearling	600	March 2017	200
Lookout Point	16	Sub-yearling	1,625	Fall 2017	190
Lookout Point	16	Yearling	1,625	Spring 2018	200
Foster	16	Yearling	1,500	Spring 2018	210
Lookout Point	16	Fry-parr	135,000	Spring/Summer 2018	varies

WINTER STEELHEAD 2016 DELIVERIES

Location	Brood Year	Target type	# fish	Status
Foster	14	2-yr smolt	800	RT and PIT tagged at FPGL Spring 2016
Foster	15	Yearling	150	RT and PIT tagged at FPGL Fall 2016
Green Peter	14	2-yr smolt	500	Delivered May 2016
Detroit	15	Yearling	28,800	Delivered to Marion Forks Dec 2015 for Fall 2016 release
Detroit	16	Sub-yearling	27,000	Released by ODFW

Location	Brood Year	Deliverable type	#	Target date	Target size (mm)
Foster	16	2-yr smolt	1,300	Spring 2018	160
Foster	17	Yearling	200	Fall 2018	140
Foster	17	2-yr smolt	1,300	Spring 2019	160

- Since project inception, ~ 280,000 Chinook salmon and steelhead surrogates requested
 - 135,000 BY16 Chinook salmon requested for a single study
- Depending on dam operations, as high as <u>92%</u> of fish released above dams migrated as expected

How do our surrogates compare?

- Body morphometrics
- Osmoregulation
- Physiology
- Behaviour
- Genetics
- Fin quality
- Body composition
- Early maturing males

How do our surrogates compare?

Hatchery

Surrogate

Natural

CAUDAL FIN QUALITY

Hatchery

Surrogate

FIN QUALITY – CHINOOK SALMON CAUDAL FIN

DIGITIZE IMAGES USING IMAGEJ

DORSAL – VENTRAL LOBE ASYMMETRIES

BODY COMPOSITION - CHINOOK SALMON

BODY COMPOSITION: % LIPID WET WEIGHT

Surrogate

Hatchery

Sunogue

Natural

BODY COMPOSITION - CHINOOK SALMON

NATURAL LIFE HISTORY VARIATION

Do phenotypic differences expressed early in life lead to different phenotypes expressed later?

DOES EMERGENCE TIME PREDICT MOVEMENT?

Released into the McKenzie River – May 2016

Release location

- Downstream
- Upstream

Treatment

- Early emergers
- Peak emergers
- Late peak emergers
- Post peak emergers
- + Stayers

WILLAMETTE FALLS DETECTIONS

- 2 detections Oct 2016
 - Peak and post peak emergence groups
- Monitoring detections through spring 2017

Does altered rearing environment + Natural life history =

More wild-like fish?

Surrogate wild Chinook salmon migrant

Photo by Todd Pierce

THANK YOU

QUESTIONS?

Treatment

- Early emergers
- Peak emergers
- Late peak emergers
- Post peak emergers
- + Stayers